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Abstract
It has recently been proposed that a single dimension, called the p factor, can capture a person’s liability to mental
disorder. Relevant to the p hypothesis, recent genetic research has found surprisingly high genetic correlations
between pairs of psychiatric disorders. Here, for the first time, we compare genetic correlations from different methods
and examine their support for a genetic p factor. We tested the hypothesis of a genetic p factor by applying principal
component analysis to matrices of genetic correlations between major psychiatric disorders estimated by three
methods—family study, genome-wide complex trait analysis, and linkage-disequilibrium score regression—and on a
matrix of polygenic score correlations constructed for each individual in a UK-representative sample of 7 026 unrelated
individuals. All disorders loaded positively on a first unrotated principal component, which accounted for 57, 43, 35,
and 22% of the variance respectively for the four methods. Our results showed that all four methods provided strong
support for a genetic p factor that represents the pinnacle of the hierarchical genetic architecture of psychopathology.

Introduction
High comorbidity rates among psychiatric disorders1

have led to research investigating higher-order dimen-
sions for psychopathology, including Internalizing (e.g.,
Anxiety and Depression), Externalizing (e.g., Hyper-
activity and Conduct Disorder), and Psychotic Experi-
ences (e.g., Schizophrenia and Bipolar Disorder)2.
However, these higher-order dimensions also correlate
with each other3, which suggests the possible existence of
a general factor of psychopathology4. This general factor
has been called the p factor5 as it captures the shared
variance across psychiatric symptoms, and predicts a
multitude of poor outcomes and general life
impairment6,7.
Family studies support the hypothesis of a genetic p

factor in that genetic influences on psychopathology
appear to be general across disorders rather than specific

to each disorder. For example, psychiatric disorders do
not breed true—parental psychopathology predicts off-
spring psychiatric disorders but with little specificity8.
Family research has found substantial genetic correlations
between pairs of disorders, such as Major Depression and
Generalized Anxiety Disorder9 and Schizophrenia and
Bipolar Disorder10. Genetic overlap between internalizing
and externalizing higher-order constructs has also been
noted11, consistent with the hypothesis of a general p
factor. The culmination of this research is a recent study
of more than 3 million full and half-siblings using Swedish
national register data that found evidence for a general
genetic factor that pervades eight major psychiatric dis-
orders as well as convictions for violent crimes12.
Although genetic correlations were not presented, the
average loading was 0.45 on a general genetic factor.
Genomic research also supports the hypothesis of a

genetic p factor. The first hint came from genome-wide
association (GWA) findings that single- nucleotide poly-
morphisms (SNPs) found to be associated with Schizo-
phrenia were also associated with bipolar disorder13. In
2013, genetic correlations were first estimated from linear
mixed model analyses (genome-wide complex trait
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analysis, GCTA) of individual genotype data for five
psychiatric disorders in the Psychiatric Genomics Con-
sortium (PGC)14. Schizophrenia, Bipolar Disorder and
Major Depressive Disorder yielded the highest genetic
intercorrelations (average= 0.53); the average genetic
correlation among the five disorders, including Autistic
Spectrum Disorder and Attention-Deficit/Hyperactivity
Disorder, was 0.22.
Linkage-Disequilibrium Score Regression (LDSC)15 has

made it possible to estimate genetic correlations from
GWA summary statistics rather than requiring genotype
data for individuals. This method is based on correlations
in effect sizes across disorders taking into account linkage
disequilibrium and the SNP heritabilities of the disorders.
LDSC genetic correlations derived from summary GWA
statistics for the same five PGC disorders are remarkably
similar to the GCTA genetic correlations described above
that used individual genotype data16. A recent LDSC
analysis of eight psychiatric disorders again showed con-
siderable correlations between Schizophrenia, Bipolar
Disorder and Major Depressive Disorder (average= 0.41),
and yielded an average genetic correlation of 0.2117,
highlighting the relevance of testing the hypothesis of a
genetic p factor.
Another approach that has not yet been systematically

applied to test for a genetic p is to correlate genome-wide
polygenic scores (GPS), although some GPS correlations
between pairs of psychiatric disorders have been repor-
ted18. A GPS for a disorder is created for an individual by
summing the count of alleles shown in GWA studies to be
associated with the disorder, after weighting the alleles by
the strength of their association19. The previously
described PGC dataset was used to create polygenic
scores for each of the five disorders13, and polygenic
scores for Schizophrenia, Bipolar Disorder and Major
Depressive Disorder predicted liability variance in the
other disorders, again suggesting genetic overlap. How-
ever, as new GWA studies have been published since for
Schizophrenia, Attention-Deficit/Hyperactivity Disorder
and Autism Spectrum Disorder with considerably
increased sample sizes, replication is needed. GPS corre-
lations between disorders are related to genetic correla-
tions, but differ from the genetic correlations estimated
from other methods because they index both the rela-
tionship between individual-specific genetic effects for
traits in the population and genetic effects derived from
an independent analysis. Nonetheless, GPS correlations
provide another opportunity to test the hypothesis of a
genetic p factor.
Based on the overwhelming evidence that favors a

general p factor, we test whether a general p factor also
emerges from genomic data. In the present study, we
bring together genetic correlations for major psychiatric
disorders derived from four genetic methods (family,

GCTA, LDSC and GPS). We applied principal component
analysis to correlation matrices derived from these four
methods and estimate the amount of genetic variance
explained by a genetic p factor. For the GPS approach, we
constructed GPS for eight psychiatric disorders for each
individual in a sample of 7 026 unrelated individuals from
the Twins Early Development Study (TEDS)20.
Our hypothesis was that a general genetic factor would

emerge from factor analyses of correlations derived from
each of the four genetic methods. We also investigated the
extent to which all disorders load on this general factor
and the magnitude of their loadings.

Methods
Sample
This study included 7 026 unrelated (i.e., one member per

twin pair), genotyped individuals from TEDS, a longitudinal
birth cohort that recruited over 1 5000 twin pairs between
1994–1996 who were born in England or Wales. Despite
some attrition, the remaining cohort, as well as the geno-
typed subsample have been shown to represent the UK
population20,21. Written informed consent was obtained
from parents. Project approval was granted by King’s Col-
lege London’s ethics committee for the Institute of Psy-
chiatry, Psychology and Neuroscience (05.Q0706/228).

GPS calculation and GPS correlations
To obtain individual-specific genetic measures for psy-

chiatric traits, we created eight GPS in our independent
sample of 7026 individuals based on publicly available
GWA summary statistics from the PGC: Schizophrenia,
Bipolar Disorder, Major Depressive Disorder, Autism
Spectrum Disorder, Attention-Deficit/Hyperactivity Dis-
order, Obsessive-Compulsive Disorder, Anorexia Nervosa,
Post-Traumatic Stress Disorder (Supplementary Table S1).
Following quality control and imputation (see Supplemen-
tary Methods S1 for details), genotypic data included 515
100 genotyped or imputed SNPs (info= 1). To calculate
polygenic scores, we used a Bayesian approach, LDpred22,
which modifies the summary statistic coefficients based on
information on linkage disequilibrium (LD) and a prior on
the effect size of each SNP. The final GPS is obtained as the
sum of the trait-increasing alleles (each variant coded as 0, 1
or 2), weighted by the posterior effect size estimates. For our
analyses, we used a prior that assumes a fraction of causal
markers of 1 (for more information, see Supplementary
Methods S2). All polygenic scores were adjusted for the first
ten principal components of the genotype data, and chip,
batch and plate effects using the regression method. The
resulting standardized residuals were used for subsequent
analyses.
In the TEDS sample, we created polygenic scores for the

eight psychopathology traits. These scores followed a
normal distribution and were used to generate a
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correlation matrix for these eight polygenic scores for use
in subsequent analyses.

Genetic correlations based on LDSC
LDSC is a method used to estimate SNP-heritability

(SNP−h2) based on GWA summary statistics only, and
relies on the principle that the presence of LD in the study
sample is correlated with the upward bias of GWA test
statistics15. Cross-trait LDSC16 is an extension of this
method and makes it possible to estimate the genetic
relationship between two traits. For each SNP, this method
establishes the covariance of the test statistics for trait x
and trait y, and regresses this value on the LD score of that
SNP (i.e., the sum of the squared correlations of the SNP
with its surrounding SNPs), whereby the slope represents
the genetic covariance. The genetic correlation is obtained
by standardizing the covariance by the SNP-h2 for both
traits ðrg ¼ covxy=

ffiffiffiffiffiffi

hx2
p

hy2Þ. We applied cross-trait LDSC
analysis on the same eight PGC summary statistics used
for polygenic score creation to generate a genetic corre-
lation matrix for further analysis. (For univariate SNP-h2

results using LDSC, see Supplementary Table S2.)

Genetic correlations based on GCTA
In addition to GPS and LDSC analysis, we also obtained

genetic correlation matrices through cross-sample
bivariate GCTA based on genome-wide relatedness
maximum likelihood23. Unlike LDSC, which uses GWA
summary statistics, bivariate GCTA requires individual-
level genotype data of unrelated individuals to estimate
genetic correlations, implementing linear mixed model
analysis. Cross-sample GCTA is an extension to bivariate
GCTA24 and makes it possible to calculate genetic cor-
relation estimates without requiring overlapping pheno-
typic information between samples. Rather, it compares
genetic similarity between individuals that have the same
disease status (case, control) for different disorders. For
example, if cases of one disorder are genetically more
similar to cases of a different disorder than to the
respective controls, a positive genetic correlation can be
inferred. For this study, we used published cross-sample
GCTA genetic correlations14, which included five psy-
chiatric disorders: Schizophrenia, Bipolar Disorder, Major
Depressive Disorder, Autism Spectrum Disorder, and
Attention-Deficit/Hyperactivity Disorder. (For univariate
SNP-h2 estimates, see Supplementary Table S3.)

Genetic correlations based on family data
Finally, we used genetic correlations based on quanti-

tative genetic analysis comparing 3 475 122 Swedish full-
siblings and half-siblings, who are genetically similar 50
and 25%, respectively, for additive genetic effects. This
family study represents a very different methodology as
compared to the other methods. Rather than using direct

estimates based on DNA differences, it uses indirect
estimates based on the relative resemblance of full siblings
and half siblings. Because this family study, the only one
of its kind, is so different from the other methods, it is
especially valuable to compare its genetic correlations to
those from the other three methods. The genetic corre-
lations were not included in the original publication12 but
were kindly prepared and shared by the lead author, Erik
Pettersson of the Karolinska Institute. The analysis
included seven psychopathology traits (Schizophrenia,
Bipolar Disorder, Attention-Deficit/Hyperactivity Dis-
order, Major Depressive Disorder, Anxiety, Alcohol use
Disorder and Drug Abuse), as well as convictions for
Violent Crimes. Schizoaffective disorder was redundant
with Schizophrenia (genetic correlation= 0.99) and thus
omitted here (Supplementary Figure S1).

Statistical analyses
Principal component analysis
To test the hypothesis that a general genetic p factor

emerges from the genetic relationships among psycho-
pathology traits, we performed eigenvalue decomposition
through principal component analysis (PCA), which aims to
maximize variation of the first principal component25. We
applied PCA to genetic correlation matrices derived from
family analysis (8 × 8 matrix), GCTA (5 × 5 matrix), LDSC
(8 × 8 matrix), and GPS (8 × 8 matrix) to estimate the
loadings of each psychiatric trait on this component and the
variance explained by the first principal component.
We also tested the statistical significance of the factor

loadings, which represent correlations between the ori-
ginal standardized variables and the factors. By calculating
the t-statistic of the correlation coefficients, we were able
to derive empirical p-values based on the t-statistic dis-
tribution with n−2 degrees of freedom26. Significance
testing was applied only to family and GPS loadings
because we were unable to obtain degrees of freedom for
GCTA and LDSC data, which is required for the calcu-
lation of t. All tests were two-tailed and a significance
level of α= 0.05 was accepted as statistically significant. In
addition to testing statistical significance, we calculated
the proportion of factor loadings with a magnitude of ≥|
0.30|. This value is a commonly used threshold in the
factor analysis literature, as it indicates that the factor
explains ~10% of the variance in the measure27, therefore
substantially contributing to the factor.
The decision of how many components to retain for

rotation was based on three criteria: (i) the Kaiser criter-
ion28 of eigenvalue λ > 1; (ii) parallel analysis29, and (iii)
scree plot inspection30 (for a more detailed description, see
Supplementary Methods S3). To improve interpretability of
the extracted components, we performed oblique rotation
using the Oblimin method. We chose this approach, which
permits factors to be correlated, because previous work
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using phenotypic data showed considerable associations
between latent psychopathology dimensions3,5.
Analyses were performed in the open-source software

R31, using the hornpa32 package to perform parallel ana-
lysis, the psych33 package to conduct PCA (using the
‘principal’ function), and the GPArotation34 package to
apply oblique rotation. Analysis scripts are available from
the first author upon request.

Results
Genetic correlations
Figure 1 presents the genetic correlations from family

analysis, GCTA and LDSC, and the correlations from GPS
analysis. The average genetic correlations were 0.49 for
family analysis, 0.22 for GCTA and 0.24 for LDSC, indi-
cating general genetic overlap among psychiatric

disorders. The average GPS correlation was lower (0.09),
as expected. However, correlations for all four genetic
approaches clustered in a strikingly similar way. Most
notably, the average genetic correlations between Schizo-
phrenia, Bipolar and Depression were consistently the
largest in magnitude −0.67 for family analysis, 0.53 for
GCTA, 0.47 for LDSC, and 0.19 for GPS. High genetic
correlations were not driven by larger heritability estimates
for these traits in comparison to the other disorders (see
Supplementary Tables S2 and S3 for SNP-h2 estimates).

Principal component analysis
PCA provided converging evidence for a general psy-

chopathology factor. Figure 2 shows that all four corre-
lation matrices yielded first unrotated principal
components with larger eigenvalues than the subsequent

Fig. 1 Genetic correlations from family analysis (a), Genome-wide Complex Trait Analysis (b), Linkage-Disequilibrium Score Regression (c) and
Genome-wide Polygenic Score (d) analysis. Values represent genetic correlations for (a), (b) and (c) and Pearson’s correlation coefficients for (d). SCZ
Schizophrenia, BIP Bipolar Disorder, MDD Major Depressive Disorder, ASD Autism Spectrum Disorder, ADHD Attention-Deficit/Hyperactivity Disorder,
ANX Anxiety, OCD Obsessive-Compulsive Disorder, AN Anorexia Nervosa, PTSD Post-Traumatic Stress Disorder; Drug=Drug Abuse; Alcohol= Alcohol
Abuse; Crime= Convictions of Violent Crimes
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components. The first principal component accounted for
57, 43, 35 and 22% in family, GCTA, LDSC and GPS data,
respectively. (For proportion of variance explained by the
other unrotated principal components, see Supplemen-
tary Table S4.)
Figure 3 shows first unrotated principal component

loadings of all psychopathological traits for the four
genetic methods. The loadings on the first unrotated
principal component mirrored the genetic correlations
(Fig. 1): the average loadings were 0.75 for family data,
0.58 for GCTA, 0.57 for LDSC and 0.44 for GPS. We were
able to test the statistical significance of loadings in family
and GPS analyses, and found that all traits significantly
loaded on the first unrotated principal component (all p-
values ≤ 1.65 × 10−41), even though the GPS data showed
some of the lowest loadings. When we applied the con-
ventional threshold of ≥|0.30|, we found that most of the
loadings met this threshold: 100% of the disorders in
family data, 80% in GCTA data, 88% in LDSC data, and
75% in GPS data. The variation in factor loadings across
the four methods can be explained by the inclusion of
different disorders, as average loadings for the disorders in
common were highly similar (family= 0.70; GCTA=
0.69; LDSC= 0.66; GPS= 0.53).

Schizophrenia, Bipolar, and Depression consistently had
the highest loadings on the first unrotated principal
component across all genetic approaches with the
exception of the GPS method, where Bipolar was not
amongst the highest loading disorders.

Sensitivity analyses using LDSC and GPS data
To test whether GPS results changed when applying a

different prior as part of the GPS calculation, we re-ran
PCA using GPS based on the fraction of causal markers of
0.10. Results were almost identical (see Supplementary
Table S5).
Furthermore, it is possible that low GPS loadings were

attributable to insufficient statistical power, rather than a
lack of true effects. Therefore, we re-ran PCAs using
LDSC and GPS data based on superceded GWA study
summary statistics with smaller sample sizes, where pos-
sible (see Supplementary Table S6 for sample informa-
tion). Although we found a slight reduction in the
variance explained by the first principal component in
LDSC data (34 vs 35%), the effect was more pronounced
in the GPS data (19 vs 22%). Additionally, average GPS
loadings on the first principal component decreased from
0.44 to 0.37, and only 50% of the disorder GPS met the
loading threshold of ≥|0.30| . These analyses suggest that
as GWA study sample sizes increase, the magnitude of
factor loading effect sizes on a genetic p factor will
approach those derived from family studies.

Factor rotation solutions
Based on the criteria described in the Methods section,

we retained two principal components for rotation for
family, GCTA and GPS data, and three principal com-
ponents for LDSC data (for more details, see Supple-
mentary Table S4). However, to improve comparability of
the rotated factor solutions across the four genetic
methods, we kept two principal components for the LDSC
data. Results of the rotation of three components for
LDSC data can be found in Supplementary Table S7.
Figure 4 lists the loadings for the first two rotated fac-

tors after performing oblique rotation. Rotated factor
loadings for all methods (family, GCTA, LDSC, GPS)
show that Schizophrenia and Bipolar Disorder con-
sistently load highly onto the same factor, together with
Depression in the family and GCTA data. This is expected
from the higher genetic intercorrelations between these
traits for all methods (Fig. 1). For the remaining psy-
chiatric traits, results were less consistent when compar-
ing family data to genomic data (GCTA, LDSC, GPS). In
part, this reflects the traits included—most notably, a
Drug Abuse/Crime factor emerged from the family data
because, unlike the other datasets, Drug Abuse, Alcohol
Abuse and Violent Crime were included and created the
first rotated factor. Anxiety also contributed to both

Fig. 2 Scree plot showing eigenvalues for each principal component
after performing PCA on correlation matrices for four genetically
sensitive methods: family analysis, Genome-wide Complex Trait
Analysis (GCTA), Linkage-Disequilibrium Score Regression (LDSC) and
Genome-wide Polygenic Scoring (GPS). The dashed line represents
the cut-off for principal component retention based on the Kaiser’s λ
> 1 criterion28
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rotated factors. For the LDSC and GPS method, which are
based on the most powerful GWA studies, the second
factor primarily included Depression, Attention-Deficit/
Hyperactivity Disorder, Autism and Post-Traumatic
Stress Disorder. Correlations between the first and sec-
ond oblique rotated factors were 0.45 for family data, 0.08
for GCTA data, 0.14 for LDSC data and 0.10 for GPS data.

Discussion
These results provide genetic support for p, a general

factor of psychopathology that represents a single, con-
tinuous genetic dimension of the psychiatric spectrum.
The four methods used to estimate genetic correlations
differ substantially: quantitative genetic analysis of siblings
and half-siblings12, GCTA estimates based on SNP dif-
ferences between unrelated individuals14, LDSC analysis
based on GWA summary statistics, and GPS for indivi-
dual data presented in this paper. Nonetheless, each of the
principal component analyses from the four methods
yielded a general factor on which all disorders loaded,
explaining between 20 and 60% of the total variance.
Schizophrenia, Bipolar and Depression are the oldest

and most consistently diagnosed psychiatric disorders, yet
they are consistently among the highest- loading disorders
on this genetic p factor. This finding is unlikely to be due
to some artifact of genetic analysis because it was con-
sistent across different genetic methods applied to dif-
ferent samples.
It is difficult to draw general conclusions about the

other disorders that varied across the four genetic meth-
ods (Obsessive Compulsive Disorder, Anorexia, and Post-
Traumatic Stress Disorder, Anxiety, Drug Abuse, Alcohol

Abuse and Violent Crime). However, when any of these
disorders were included in a study, they consistently
contributed to a genetic p factor in the sense that they
loaded positively on the first unrotated principal
component.
Although the four genetic methods yielded similar

patterns of correlations and patterns of loadings on the
first unrotated principal component, they differed in the
magnitude of their estimates of correlations and loadings,
even when only considering the disorders in common (i.e.,
Schizophrenia, Bipolar, Depression, Autistic Spectrum
Disorder). In principle, genetic correlations calculated
through GCTA and LDSC should not differ substantially
from family study estimates. Even though univariate SNP-
h2 is generally lower than family-h2 because the SNP-h2

estimate does not include rare variants and nonadditive
effects, this downward bias influences both numerator
and denominator to equal extents when calculating
genetic correlations ðrg ¼ hxhy=

ffiffiffiffiffiffi

hx2
p

hy2Þ, therefore can-
celling out the bias35. However, if the correlation between
causal SNPs is stronger for common variants than for rare
variants, the SNP genetic correlation estimate would be
higher than family study estimates, because only common
SNPs are included in the analysis16. Nevertheless, for the
disorders in common, family data produced higher aver-
age genetic correlations (0.49) than GCTA (0.34) and
LDSC (0.37). An alternative explanation involves differ-
ences in sample ascertainment and psychiatric diagnoses.
In most genomic studies, sampling strategies may select
‘pure’ cases and exclude cases with other co-occurring
conditions, and such ‘pure’ cases do not represent the
disordered population36. In contrast, family data used in

Fig. 3 Loadings of psychopathology traits on the first unrotated principal component for each of the four types of genetic data. GCTA Genome-wide
Complex Trait Analysis, LDSC Linkage-Disequilibrium Score Regression, GPS Genome-wide Polygenic Score, SCZ Schizophrenia, BIP Bipolar Disorder,
MDD Major Depressive Disorder, ASD Autism Spectrum Disorder, ADHD Attention-Deficit/Hyperactivity Disorder, ANX Anxiety, OCD Obsessive-
Compulsive Disorder, AN Anorexia Nervosa, PTSD Post-Traumatic Stress Disorder; Drug= Drug Abuse; Alcohol= Alcohol Abuse; Crime= Convictions
of Violent Crimes. *= reached statistical significance of p ≤ 1.65 × 10−41; it was only possible to test the statistical significance for the loadings relating
to GPS and family data (see Methods section for details)
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this study12 were based on a non-hierarchical approach to
classification, thus allowing for greater overlap among the
disorders.
GPS results, which are based on the most conceptually

distinct method, yielded the lowest overall correlations. A
GPS is the aggregation of all genetic effects found in an
independent GWA analysis in respect to an individual’s
genotype. Therefore, GPS correlations index the extent to
which the total variance of individuals’ GPS for one trait
covaries with GPS for other traits. Two possible reasons
why GPS correlations may be the lowest are that (i) in
addition to true effects, a GPS includes the measurement
error for all the SNPs tested across the genome in GWA

analysis and (ii) a GPS is generated using genotypes from
one cohort and effect sizes from a second, independent
cohort.
What causes this genetic p factor? The positive mani-

fold of the genetic p factor is agnostic about its causes.
There are several, equally plausible hypotheses for the
mechanisms that cause cross-disorder correlations37. One
possible pathway may be biological pleiotropy, where
DNA variants are causally involved in the development of
several traits related to psychopathology. An alternative
explanation is mediated pleiotropy, in which comorbidity
occurs because DNA variants increase risk for one dis-
order, and then this disorder causes other disorders in

Fig. 4 Rotated factor loadings for the four types of genetic data. RF rotated factor based on oblique (Oblimin) rotation, GCTA Genome-wide Complex
Trait Analysis, LDSC Linkage-Disequilibrium Score Regression, GPS Genome-wide Polygenic Score, SCZ Schizophrenia, BIP Bipolar Disorder, MDD Major
Depressive Disorder, ASD Autism Spectrum Disorder, ADHD Attention-Deficit/Hyperactivity Disorder, ANX Anxiety, OCD Obsessive-Compulsive
Disorder, AN Anorexia Nervosa, PTSD Post-Traumatic Stress Disorder; Drug= Drug Abuse; Alcohol= Alcohol Abuse; Crime= Convictions of Violent
Crimes
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turn. A third hypothesis is that DNA variants cause some
general impairment that forms the core of various dis-
orders, consequently producing genetic correlation
between specific diagnoses. That is, the thousands of
DNA variants associated with each symptom or disorder
might affect all personality and cognitive processes that
increase risk, thus providing many pathways to
psychopathology.
Although it is remarkable how much genetic variance is

explained by p, it does not explain all, or even most, of the
genetic variance. Assuming a hierarchical model with p at
the highest level6,7, broader psychiatric dimensions at a
middle level, and specific psychopathologies at the lowest
level, the question is how much genetic variance is
accounted for by the three levels. In the realm of cognitive
abilities, there continues to be debates about the nature of
the middle level38.
As compared to p, there is less clarity in our results

about the nature of the second level of the hierarchical
structure, as represented by the rotated factor solutions.
One rotated factor consistently includes Schizophrenia
and Bipolar Disorder. However, the other rotated factor is
less clear. For example, although Attention-Deficit/
Hyperactivity Disorder loads on the second factor, it
clusters positively with Depression and Autism Spectrum
Disorder in the LDSC and GPS results, positively with
Anxiety, substance abuse and Crime in the family results,
and negatively with Autistic Spectrum Disorder in the
GCTA and GPS results. It may be that the second level of
the hierarchical structure will remain unclear until ana-
lyses of this type begin to use a transdiagnostic approach,
that is, using symptoms to build a hierarchical model from
the ground up. As these data become available in the
future, we will be able test the genetic p factor model
more formally by contrasting it to alternative models.
Another issue for future research is the extent to which

the p factor is even more general than psychiatric dis-
orders. The same approach can be used to investigate the
genetic relationship between psychiatric disorders and
personality traits, cognitive traits, structural and func-
tional brain traits, medical and neurological disorders, and
physiological traits. However, here we chose to focus on
the extent to which a genetic p factor emerges from
genomic analyses of psychiatric disorders themselves.
As noted, our analyses are limited to the data that

currently exist, including the power of current GWA
studies and the disorders included in these studies. A
fundamental limitation is ‘missing heritability’, the gap
between SNP-h2 and family study heritability estimates.
We used the most recent publicly available GWA sum-
mary statistics, some of which are considerably under-
powered. This limitation most affects our GPS analysis,
which predicts genetic risk at the level of individuals. The
modest SNP-h2 and measurement error of the GWA

studies from which the GPS were derived are partly
responsible for the low correlations between the GPS.
More powerful GWA studies are in progress, and we are
optimistic that new GPS will have improved predictive
accuracy. More generally, GWA studies focused on phe-
notypic p should be able to capture genetic p to a greater
extent than trying to derive genetic p from GWA studies
of separate disorders that are sometimes diagnosed as
‘pure’ cases that exclude other diagnoses.
In conclusion, we report strong evidence for a genetic p

factor that represents a continuous, underlying dimension
of psychiatric risk using four distinct genetic methods. As
GWA studies continue to increase in sample size as well
as in the diversity of their target traits, our current results
suggest that a genetic p factor could be useful in psy-
chiatric research.
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