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Abstract

Mapping individual differences in brain function has been hampered by poor reliabil-

ity as well as limited interpretability. Leveraging patterns of brain-wide functional

connectivity (FC) offers some promise in this endeavor. In particular, a macroscale

principal FC gradient that recapitulates a hierarchical organization spanning molecu-

lar, cellular, and circuit level features along a sensory-to-association cortical axis has

emerged as both a parsimonious and interpretable measure of individual differences

in behavior. However, the measurement reliabilities of this FC gradient have not

been fully evaluated. Here, we assess the reliabilities of both global and regional prin-

cipal FC gradient measures using test–retest data from the young adult Human Con-

nectome Project (HCP-YA) and the Dunedin Study. Analyses revealed that the

reliabilities of principal FC gradient measures were (1) consistently higher than those

for traditional edge-wise FC measures, (2) higher for FC measures derived from gen-

eral FC (GFC) in comparison with resting-state FC, and (3) higher for longer scan

lengths. We additionally examined the relative utility of these principal FC gradient

measures in predicting cognition and aging in both datasets as well as the HCP-aging

dataset. These analyses revealed that regional FC gradient measures and global gradi-

ent range were significantly associated with aging in all three datasets, and moder-

ately associated with cognition in the HCP-YA and Dunedin Study datasets,

reflecting contractions and expansions of the cortical hierarchy, respectively. Collec-

tively, these results demonstrate that measures of the principal FC gradient, espe-

cially derived using GFC, effectively capture a reliable feature of the human brain

subject to interpretable and biologically meaningful individual variation, offering

some advantages over traditional edge-wise FC measures in the search for brain–

behavior associations.
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1 | INTRODUCTION

A primary goal of functional magnetic resonance imaging (fMRI) is to

better understand the brain mechanisms that give rise to complex

behavior, including the pathophysiology of brain disorders. However,

progress toward this goal has been slower than expected, and recent

work has drawn attention to challenges arising from underpowered

samples and small effect sizes (Marek et al., 2022; Nour et al., 2022)

as well as low test–retest reliability of the most commonly studied

fMRI measures (Elliott et al., 2020; Noble et al., 2019). In particular,

test–retest reliability sets an upper bound on the association that can

be observed between two variables (Nunnally, 1959), making it impor-

tant for researchers examining links between brain and behavior to

evaluate the reliability of their measures of interest in order to inform

how they design studies and subsequently interpret results. A second

key component for positioning fMRI to meaningfully advance the field

is the ability to interpret results to the extent that they identify strate-

gies for prevention, diagnosis, or treatment of brain disorders.

Given increasing evidence that complex human behavior depends

on distributed networks throughout the brain rather than individual

brain regions (Liu et al., 2022; van den Heuvel & Hulshoff Pol, 2010),

there is a promising opportunity to search for reliable and behaviorally

relevant brain measures that capture putative mechanisms of underly-

ing global functional networks. Studies of intrinsic network structure

estimated from resting-state functional connectivity (rsFC) consis-

tently demonstrate the ability of multivariate global connectivity mea-

sures to predict various complex behaviors above chance level,

including cognition (Finn et al., 2015; Mansour et al., 2021), personal-

ity (Dubois et al., 2018; Hsu et al., 2018; Nostro et al., 2018), and clini-

cal symptoms (Fair et al., 2012; Lake et al., 2019; Wang et al., 2020).

Further, recent evidence suggests that estimates of network structure

from a combination of resting-state and task fMRI data, or general FC

(GFC), closely mirror those from resting-state data alone (Cole et al.,

2014; Fair et al., 2007; Gratton et al., 2018) while offering the poten-

tial for higher reliability and increased predictive utility (Elliott

et al., 2019; Greene et al., 2018). However, achieving peak levels of

reliability and behavioral prediction accuracy for both rsFC and GFC

measures requires a large amount of fMRI data (Elliott et al., 2019;

Noble et al., 2019), and acquiring sufficiently long scans can reach

prohibitive levels of expense and participant burden. Additionally,

there are persistent challenges with interpreting high-dimensional FC

measures (Chen et al., 2022; Tian & Zalesky, 2021), including a long-

standing debate over the meaning of negative correlations induced by

data cleaning (Li et al., 2019) and difficulty elucidating how FC

emerges from brain structure (Suarez et al., 2020).

In contrast to the bulk of existing research using measures of FC,

recent work has shown that the well-established functional brain net-

works are not entirely independent but rather are situated along a pri-

mary continuous axis of variation that can be revealed by dimension

reduction techniques (Margulies et al., 2016). This “principal FC gradi-

ent” consists of unitless values at each cortical region that represent

the relative position of that region along the axis of variation, where

regions that are closer to one another on the gradient have more

similar patterns of FC with the rest of the cortex than regions that are

farther apart. This gradient closely corresponds with the anatomically

established unimodal sensory-to-heteromodal association cortical

hierarchy (Margulies et al., 2016; Mesulam, 1998). At one end of this

hierarchy are unimodal cortices that specialize in performing low-level

sensory and motor processing (e.g., V1, A1, and M1) (Mesulam, 1998).

At the opposite end of the hierarchy are heteromodal association cor-

tices, which reach their apex in regions of the default mode networks

best known for their contributions to abstract cognitive faculties

including episodic memory, semantic cognition, theory of mind, and

reasoning about the future (Buckner & DiNicola, 2019; DiNicola

et al., 2020). Cortical regions lower in the hierarchy (e.g., V1 and A1)

tend to be one or two synapses away from dedicated and direct sen-

sory input (e.g., retinal ganglion cells and cochlear neurons), whereas

cortical regions at the apex of the hierarchy (e.g., posterior cingulate

and dorsolateral prefrontal cortex), have no direct synaptic connec-

tions to sensory neurons and instead are often four or more synapses

removed from direct sensory input (Buckner & Margulies, 2019).

In addition, several other known cytoarchitectural and network

features differentiate heteromodal association from unimodal sensory

cortex in a graded, continuous fashion. For example, as distance from

sensory cortex increases, the cortex becomes less myelinated, has

more dendritic spines and inhibitory interneurons, maintains informa-

tion over longer timescales, has more diverse connectivity to the rest

of the brain, and has altered patterns of gene expression and receptor

distribution (Burt et al., 2018; Demirtas et al., 2019; Goulas

et al., 2021; Nakai & Nishimoto, 2020; Schultz et al., 2022;

Wang, 2020). These features suggest a hierarchy of sensory abstrac-

tion with a greater capacity to flexibly gate an increasing number of

inputs, enabled by fewer structural constraints, decreasing respon-

siveness to external stimulation, and increasing ability to maintain

information over time (Buckner & DiNicola, 2019; Fox et al., 2020;

Huntenburg et al., 2018; Wang, 2020). Moreover, regions at the apex

of this gradient are the most expanded in hominid evolution and take

the longest to mature during development (Buckner & Krienen, 2013;

Hill et al., 2010; Reardon et al., 2018).

Together, these observations have been combined to form the

“tethering hypothesis” of cortical differentiation, which states that

the regions of the brain at the apex of the hierarchical sensory-

to-association gradient allow for uniquely human cognitive abilities

because they have become relatively “untethered from sensory sig-

naling hierarchies,” allowing for deeper abstraction and functional

flexibility (Buckner & Krienen, 2013). In part, this hypothesis suggests

that increasing physical and functional “distance” between sensory

and association cortices has allowed for more abstract, uniquely

human cognitive abilities to emerge over evolutionary time. Notably,

the difference between the regional principal FC gradient values at

either end of the axis, or the gradient “range,” represents the func-

tional analog of “distance” between sensory and association areas,

where larger values indicate a greater separation between constituent

unimodal and transmodal networks and may correspond to a greater

degree of “untethering.” Thus, the principal FC gradient appears to

represent the functional manifestation of the sensory-to-association
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axis, positioning it as an interpretable proxy measure that allows for

the non-invasive study of the cortical hierarchy in humans. Impor-

tantly, the ability to align individual FC gradients to a common tem-

plate (Coifman & Hirn, 2014; Langs et al., 2015) further allows for

direct comparisons between individuals and mapping of individual

differences.

Several studies have examined behavioral associations with prin-

cipal FC gradient measures. Notable findings have included a com-

pressed (or smaller) gradient range in autism (Hong et al., 2019),

depression (Xia et al., 2022), and schizophrenia (Dong et al., 2021) as

well as during the use of psychedelic drugs (Girn et al., 2022). In con-

trast, an expanded (or larger) gradient range has been reported in epi-

lepsy (Meng et al., 2021). Others have identified changes in gradient

range in response to changing states or task demands (Brown

et al., 2022; Cross et al., 2021; Gale et al., 2022; Murphy et al., 2019;

Shao et al., 2022; Zhang et al., 2022). Still others have leveraged

regional values from one or more FC gradients to predict various

behavioral features in multivariate analyses (Bethlehem et al., 2020;

Hong et al., 2020; Kong et al., 2022).

While such early studies suggest that the variability of the princi-

pal FC gradient is capable of capturing individual differences in both

complex normal and abnormal behaviors, proper contextualization of

these findings is difficult as there has been a paucity in evaluation

of critical psychometric properties of the measure. In particular, prior

work on the test–retest reliability of FC gradients is limited to a single

study evaluating effects of data processing choices on reliability for

the top 100 gradients (Hong et al., 2020). However, this study did not

compare gradient reliabilities to that of edge-wise FC measures, and

did not evaluate the reliability of the principal FC gradient range.

Here, we assess the test–retest reliability of the principal FC gradient

using data collected as part of the publicly available young adult

Human Connectome Project (HCP-YA) and the Dunedin Study. We

did so in service of four related goals. First, we tested whether

regional principal FC gradient measures are more reliable than tradi-

tional edge-wise FC measures commonly used for studying individual

differences. Given that gradient measures are lower dimensional and

less prone to the influence of noise, we hypothesized that they would

be more reliable. Second, we tested whether regional principal FC gra-

dient measures derived from GFC are more reliable than those

derived from rsFC, hypothesizing that as with edge-wise FC measures

(Elliott et al., 2019), gradient measures derived from GFC would be

more reliable. Third, we tested whether regional principal FC gradient

measures are more reliable for longer scan lengths, again hypothesiz-

ing that as with edge-wise FC measures (Elliott et al., 2019), longer

scans would result in higher reliability. Fourth, we evaluated the reli-

ability of the principal FC gradient range for both rsFC and GFC as

well as for different scan lengths and hypothesized that results would

mirror those with regional gradient measures. Notably, if principal FC

gradient measures can achieve good levels of reliability even for

shorter scan lengths, that would give them an advantage over other

fMRI measures adopted in the search for brain–behavior associations.

After establishing that the reliabilities of principal FC gradient

measures indicate their suitability for the study of individual

differences, we sought to additionally investigate their predictive util-

ity by testing their relationship with two important measures of health

and behavior, namely, aging and cognition. We tested these associa-

tions in data from the full HCP-YA dataset as well as in data collected

from 769 members of the Dunedin Study, an ongoing longitudinal

investigation of a population-representative birth cohort. With regard

to aging, we used chronological age in HCP-YA, which ranged from

25 to 35 years old. Given that all Dunedin Study members are the

same chronological age (i.e., 45 years at time of scanning), we used a

measure of their pace of biological aging instead of chronological age.

This measure captures the rate of declining function across multiple

organ systems over a 20-year period and is more closely linked to

changes in many behavioral, cognitive, and physical phenotypes than

chronological age (Elliott et al., 2021). We additionally sought replica-

tion of our findings in a third dataset with a broader range of variabil-

ity in chronological age, the publicly available HCP-Aging dataset. In

all three studies, cognition was quantified using composite measures

of intelligence. Given the “tethering hypothesis” of the emergence of

human cognitive abilities via increased distance between sensory and

association cortices, we hypothesized that greater cognitive ability

would be associated with increases in regional measures of the princi-

pal FC gradient in heteromodal cortices, as well as an expanded gradi-

ent range. With respect to aging, given that age-related cognitive

decline occurs throughout the lifespan (Salthouse, 2009), that brain

aging disproportionately impacts brain areas at the apex of the hierar-

chical gradient (Douaud et al., 2014), and that a potential corollary of

the “tethering hypothesis” is that a reduced gradient range might be a

general indicator of poorer brain function, we hypothesized that aging

would be associated with reductions in regional values of the principal

FC gradient in heteromodal cortices, as well as a compressed gradient

range.

2 | MATERIALS AND METHODS

2.1 | Datasets

Basic demographics and summary statistics for aging and cognition

measures for all datasets are provided in Table 1.

2.1.1 | Human Connectome Project—Young adult

The HCP-YA is a publicly available dataset that includes 1206

community-based volunteers with extensive MRI and behavioral mea-

surements (Van Essen et al., 2013). In addition, the entire scan proto-

col was completed a second time in 45 participants (referred to

hereafter as the “test–retest sample”; mean days between scans was

approximately 140). All participants were free of current psychiatric

or neurologic illness and were 25–35 years of age.

The acquisition parameters and minimal preprocessing of these

data have been described extensively elsewhere (Glasser et al., 2013).

Briefly, participants underwent extensive MRI measurements that
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included T1 and T2 weighted structural imaging, diffusion weighted

imaging, and nearly 2 h of resting-state and task fMRI. Then, 1 h of

resting-state fMRI was collected on each participant in four 15-min

scans (1200 time-points each) split-up into two scanning sessions

over 2 days. In each scan session, the two resting-state scans were

followed by task fMRI (Smith et al., 2013). Across the two sessions,

each participant completed seven fMRI tasks described extensively

elsewhere (Barch et al., 2013). Briefly, tasks were designed to identify

functionally relevant “nodes” in the brain supporting working memory

(810 timepoints, 10:02 min); reward processing (506 timepoints,

6:24 min); motor function (568 timepoints, 7:06 min); language

(632 timepoints, 7:54 min); social cognition (548 timepoints,

6:54 min); relational processing (464 timepoints, 6:52 min); and emo-

tional processing (352 timepoints, 4:32 min). Altogether, 4800 time-

points totaling 60 min of resting-state fMRI and 3880 timepoints

totaling 48:30 min of task fMRI were collected from each participant.

2.1.2 | Dunedin Study imaging sample

The Dunedin Study is a longitudinal investigation of a representative

birth cohort (N = 1037; 91% of eligible births; 52% male) born

between April 1972 and March 1973 in Dunedin, New Zealand

(NZ) and eligible based on residence in the province and participation

in the first assessment at age 3 years (Poulton et al., 2015). MRI was

carried out at age 45 years in 875 Study members, who represented

the original cohort on key demographic variables (Figure S1). Addi-

tionally, 20 Study members completed the entire scan protocol a sec-

ond time (mean days between scans = 79).

Each participant was scanned using a Siemens Skyra 3 T scanner

equipped with a 64-channel head/neck coil at the Pacific Radiology

imaging center in Dunedin, New Zealand. High resolution structural

images were obtained using a T1-weighted MP-RAGE sequence with

the following parameters: TR = 2400 ms; TE = 1.98 ms; 208 sagittal

slices; flip angle = 9�; FOV = 224 mm; matrix = 256 � 256; slice

thickness = 0.9 mm with no gap (voxel size 0.9 � 0.875 � 0.875 mm);

total scan time = 6:52 min. Functional MRI was collected during

resting-state and four tasks with a series of 72 interleaved axial

T2-weighted functional slices acquired using a threefold multiband

accelerated echo planar imaging sequence with the following

parameters: TR = 2000 ms, TE = 27 ms, flip angle = 90�, field-of-

view = 200 mm, voxel size = 2 mm isotropic, slice thickness = 2 mm

without gap. 8:16 min (248 timepoints) of resting-state fMRI were col-

lected immediately before the four task fMRI scans. During the

resting-state scan participants were instructed to stay awake with their

eyes open while looking at a gray screen. Participants completed an

emotion processing task (200 timepoints, 6:40 min), a color Stroop task

(209 timepoints, 6:58 min), a monetary incentive delay task (232 time-

points, 7:44 min) and an episodic memory task (172 timepoints,

5:44 min) for a total of 813 timepoints or 27:06 min of task fMRI. All

four tasks are described in detail in the Supplement.

2.1.3 | Human connectome project—Aging

The HCP-Aging dataset is publicly available as part of the ongoing

multisite HCP Lifespan study designed to acquire normative neuroim-

aging and behavioral data for examining changes in brain organization

during typical aging and development (Bookheimer et al., 2019). The

dataset used in the current study was drawn from the second release

(Lifespan HCP Release 2.0), comprised of 725 cognitively healthy

older community volunteers (36–100 years old). All participants were

screened for a history of neurological, psychiatric, endocrine, genetic,

and other serious medical (e.g., diabetes, two or more seizures) disor-

ders, use of psychotropic drugs, and head injuries with loss of con-

sciousness and/or change in mental functioning.

The acquisition parameters and minimal preprocessing of these

data have been described extensively elsewhere (Bookheimer

et al., 2019; Harms et al., 2018). Briefly, participants underwent

extensive MRI measurement that included T1 and T2 weighted struc-

tural imaging, diffusion weighted imaging, and close to 40 min of

resting-state and task fMRI. 26 min of resting-state fMRI were col-

lected on each participant across four 6.5 min runs (488 time-points

each) split-up into two scanning sessions. In the first scan session, the

two resting-state scans were followed by task fMRI. Each participant

completed three fMRI tasks described extensively elsewhere

(Bookheimer et al., 2019). Briefly, tasks consisted of visuomotor pro-

cessing (194 timepoints, 2:46 min), inhibitory control (300 timepoints,

4:11 min), and episodic memory (345 timepoints, 4:47 min). Alto-

gether, 1952 timepoints totaling 26 min of resting-state fMRI and

TABLE 1 Demographic information and summary statistics for all samples.

Demographics
HCP-YA test–retest
sample (N = 32)

Dunedin Study test–
retest sample (N = 19)

HCP-YA full

sample
(N = 875a)

Dunedin Study full

imaging sample
(N = 769a)

HCP-aging full
sample (N = 711a)

Male sex, % (N) 34.4% (11) 21.1% (4) 46.3% (405) 50.5% (389) 44.3% (315)

Age, M (SD) 30 (3.22) 44.8 (.277) 28.6 (3.73) 45.1 (.681) 60.3 (15.6)

Pace of aging, M (SD) - .899 (.250) - .961 (.269) -

Cognition, M (SD) 109.9 (23.3) 98.2 (14.4) 114.5 (19.8) 101.0 (14.6) 109.0 (15.5)

Motion, M (SD) .157 (040) .137 (.037) .156 (.041) .175 (.058) .177 (.076)

Abbreviation: HCP-YA, young adult Human Connectome Project.
aGroup Ns vary slightly for tests of behavioral associations due to missing data.
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839 timepoints totaling 11:44 min of task fMRI were collected from

each participant.

2.2 | Image preprocessing

2.2.1 | Human connectome project—Young adult

Preprocessed structural data in MSMSulc surface space (“fMRISur-

face” pipeline) and functional time series data minimally preprocessed

with the “fMRIVolume” pipeline were downloaded from the HCP-YA

database.

Resting-state fMRI and task fMRI time series images were further

processed to limit the influence of motion and other artifacts. Voxel-

wise signal intensities were scaled to yield a time series mean of

100 for each voxel. To remove FC predominantly driven by task-

evoked coactivation, signal due to task structure was added as an

additional nuisance covariate to all task fMRI time series and removed

using a finite impulse response model (Cole et al., 2019; Fair

et al., 2007). Motion regressors were created using each participant's

6 motion correction parameters (3 rotation and 3 translation) and their

first derivatives (Jo et al., 2013; Satterthwaite et al., 2013) yielding

12 total motion regressors. Five components from white matter and

cerebrospinal fluid were extracted using CompCorr (Behzadi

et al., 2007) and also used as nuisance regressors, along with the mean

global signal. Images underwent high-pass filtering with a cutoff of

.008 Hz; high frequency signals were retained because removing high

frequency signals would have resulted in excessive loss of degrees of

freedom due to the very low TR (0.75 s) (Bright et al., 2017;

Caballero-Gaudes & Reynolds, 2017). For censoring high-motion time

points, we followed the empirically derived thresholds of .39 mm

frame-wise displacement or 4.9 units above the median DVARS as

recommended (Burgess et al., 2016). Nuisance regression, band-pass

filtering, censoring, and global-signal regression for each time series

were performed in a single processing step using AFNI's 3dTproject.

Processed time series images were then converted into CIFTI format

and registered to common 32k_fs_LR mesh with MSMSulc (Robinson

et al., 2014) using the HCP fMRI Surface Processing Pipeline. Prepro-

cessing was completed for each phase-encoding direction of each

resting-state and task scan independently, and output was combined

to yield time series for computing rsFC and GFC. All final correlation

matrices and gradient maps (derivation described in next section)

were visually inspected for artifacts.

Six test–retest participants were excluded because they were

missing one or more functional scans at either time point, four

were excluded because they had less than 40 min of resting-state

data after censoring, one was excluded because they had less than

3.125 min of data on one or more tasks after censoring, and two were

excluded because they failed visual inspection of FC correlation matri-

ces, yielding 32 datasets for test–retest reliability analyses. In the full

dataset, 244 participants were excluded because they were missing

one or more functional scans, 29 were excluded because they had less

than 40 min of resting-state data after censoring, 20 were excluded

because they had less than 3.125 min of data on one or more tasks

after censoring, and 38 were excluded because they failed visual

inspection of FC correlation matrices, yielding 875 imaging datasets

for behavior association analyses.

2.2.2 | Dunedin Study

Structural MRI data were analyzed using the HCP minimal preproces-

sing pipeline as extensively detailed elsewhere (Glasser et al., 2013).

Briefly, T1-weighted and FLAIR images were processed through the

PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines. T1-weighted

and FLAIR images were corrected for readout distortion using the gra-

dient echo field map, coregistered, brain-extracted, and aligned

together in the native T1 space using boundary-based registration

(Greve & Fischl, 2009). Images were then processed with a custom

FreeSurfer recon-all pipeline that is optimized for structural MRI with

higher resolution than 1 mm isotropic. Finally, recon-all output were

converted into CIFTI format and registered to common 32k_FS_LR

mesh using MSMSulc (Robinson et al., 2014).

Resting-state fMRI and task fMRI time series images were further

processed to limit the influence of motion and other artifacts.

Removal of task signal and nuisance regression were conducted as in

the HCP-YA dataset described above. Images were band-pass filtered

to retain frequencies between 0.008 and 0.1 Hz. We investigated a

range of frame-wise displacement cutoffs using QC-RSFC plots in

order to derive the optimal threshold for removing motion artifact as

recommended (Power et al., 2014). This investigation led to thresh-

olds of 0.35 mm frame-wise displacement and 1.55 standardized

DVARS. Nuisance regression, band-pass filtering, censoring, and

global-signal regression for all resting-state fMRI and task-fMRI time

series were performed in a single processing step using AFNI's

3dTproject. All final correlation matrices and gradient maps were visu-

ally inspected for artifacts.

One test–retest participant was excluded due to poor quality data

for one of the tasks at the second time point, yielding 19 datasets for

test–retest reliability analyses. In the full imaging dataset, 10 partici-

pants were excluded because they were missing one or more func-

tional scans, 14 were excluded because of missing anatomical scans or

failed QC for the structural processing pipeline, 7 were excluded

because they were scanned with a 20-channel head coil rather than

the standard 64-channel to accommodate larger head circumferences,

61 were excluded because they had too few degrees of freedom

remaining after censoring to complete preprocessing, and 14 were

excluded because they failed visual inspection of FC correlation matri-

ces, yielding 769 imaging datasets for behavior association analyses,

each with at least 23 total min of data remaining after censoring.

2.2.3 | Human Connectome Project—Aging

Preprocessed structural data and functional time series data were

downloaded from the HCP-Aging database and processed identically
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to the HCP-YA data described above, with the exception of censoring

thresholds. As in the Dunedin Study, we investigated a range of

frame-wise displacement cutoffs using QC-RSFC plots in order to

derive the optimal threshold for removing motion artifact as recom-

mended (Power et al., 2014). This investigation led to thresholds of

0.25 mm frame-wise displacement. At this cutoff, few to no volumes

remained as DVARS outliers, so we did not apply an additional DVARS

cutoff.

Then, 14 participants were excluded because they were missing

one or more functional scans, yielding 711 imaging datasets for all

association analyses, each with at least 9.8 total min of data remaining

after censoring. Since visual inspection revealed no artifacts and in

order to maintain representative variability in age and cognition across

this diverse sample, no further exclusions were imposed.

2.3 | Edge-wise FC matrices

For all datasets, the 32k_FS_LR space time series data were parcel-

lated into the 360 surface-based parcels of the HCP Multi-Modal Par-

cellation (Glasser et al., 2016). Time series data were subdivided to

yield specific data amounts, and resting-state and task time series

were combined for GFC, in each dataset as follows.

2.3.1 | Time series for HCP-YA

Given the large amounts of resting-state and task fMRI data available

in the HCP-YA dataset, we chose to impose an equal cut-off of

40 min of post-censoring data for both rsFC and GFC time series to

enable comparisons across modalities for primary analyses. Addition-

ally, to allow investigation of the influence of data amount on reliabil-

ity, time series data were extracted for each HCP-YA test–retest

participant across a range of amounts (5–40 min of post-censoring

data, in 5-min intervals). To arrive at a given fixed amount of GFC

data, an exactly equal amount of data from all scan types (i.e., 1/8 of

total length from each task and resting-state scan) was combined for

total lengths up to 25 min. After this point, equal amounts of each

task could no longer be added due to the shorter task scans, so time-

points were selected at random from the pool of remaining

timepoints.

2.3.2 | Time series for Dunedin Study and HCP-
Aging

In the Dunedin Study and HCP-Aging datasets, all available post-

censoring time series data were used for both rsFC and GFC in order

to maximize available data.

In all datasets, after time series extraction and compilation, pair-

wise Pearson correlation was applied to create individual edge-wise

FC matrices for each individual and modality.

2.4 | Gradient generation

All connectivity matrices were then submitted to diffusion map

embedding, a nonlinear dimensionality reduction technique (Lafon

et al., 2006), to extract subject-level FC gradients using the Brainspace

toolbox (Vos de Wael et al., 2020). The default parameters for the

toolbox were used, including retaining only the strongest 10% of FC

edges, as in previous studies (Margulies et al., 2016; Paquola

et al., 2019; Vos de Wael et al., 2020). This resulted in a principal FC

gradient, where a region's position on the gradient reflects a high level

of similarity between its FC patterns and those of other regions

nearby on the gradient, with decreasing similarity to regions farther

away. To enable comparisons across individuals, Procrustes rotations

(Coifman & Hirn, 2014; Langs et al., 2015) were used to align individ-

ual gradients in all datasets to a group-level gradient generated using

40 min of resting-state data from the full HCP-YA dataset.

To compute the range of the principal FC gradient, gradient

values were separately averaged across the 114 unimodal parcels and

246 heteromodal parcels as defined in the Cole-Anticevic Brain-wide

Network Partition (Ji et al., 2019) and subtracted. Averaging across

unimodal and heteromodal regions reduces statistical noise for the

range measure and provides a way to ensure that the computation is

based on the same regions of the brain for all individuals.

2.5 | Test–retest reliability

The intraclass correlation coefficient (ICC) was used to quantify the

test–retest reliability of both traditional edge-wise FC and principal

FC gradient measures derived from both rsFC and GFC in the HCP-

YA and Dunedin Study test–retest datasets. ICC (3,1) was used in all

analyses (Chen et al., 2018). In the HCP-YA dataset, ICCs were com-

puted for edge-wise FC matrices and their respective gradients

derived from 40 min of rsFC and GFC data as described above. In the

Dunedin Study, ICCs were computed for edge-wise FC matrices and

their respective gradients derived from each participant's single

resting-state scan and from the combination of all task and resting-

state scans (i.e., GFC). For traditional edge-wise FC, ICCs for each par-

cel were then calculated by averaging the ICCs for all edges from that

parcel. In both datasets, t-tests were used to test for differences

between parcel-wise ICCs for edge-wise FC and for the principal FC

gradient, and between parcel-wise ICCs for principal FC gradient mea-

sures derived from rsFC and from GFC. Parcel-wise ICCs were addi-

tionally calculated across a range of scan lengths (5–40 min) in the

HCP-YA dataset to explore the influence of data amount on reliability

as described above. In both datasets, t tests were used to test for dif-

ferences in reliability between unimodal and heteromodal regions (for

HCP-YA, 40 min of data were used). Next, ICCs were calculated for

the principal FC gradient range derived from each dataset, modality,

and data amount. Finally, given that only the strongest 10% of FC

edges were used to generate the principal FC gradient, parcel-wise

ICCs were additionally calculated for FC matrices with only the

6 KNODT ET AL.



strongest 10% of edges retained for each node (parcel), and the tests

for differences in reliability from the principal FC gradient were

repeated.

2.6 | Associations with age and cognition

To test for the predictive utility of measures of the principal FC gradi-

ent, we explored associations between gradient measures and mea-

sures of aging and cognition in all three datasets. In HCP-YA, aging

was indicated by chronological age, and cognition was measured using

the age-adjusted NIH toolbox cognitive function composite score,

which is derived by averaging Fluid and Crystallized cognition mea-

sures and has been shown to have excellent test–retest reliability and

strong correlations with established “gold standard” cognitive mea-

sures (Akshoomoff et al., 2014; Heaton et al., 2014). Total Ns for ana-

lyses were 875 and 862 for age and cognition, respectively. Given

that all Dunedin Study members are the same chronological age, we

used a measure of their pace of biological aging instead of chronologi-

cal age. Pace of biological aging was quantified by tracking declining

function in 19 biomarkers indexing the cardiovascular, metabolic,

renal, immune, dental, and pulmonary systems across ages 26, 32,

38, and 45 years, referred to as participants' “pace of aging” (Elliott

et al., 2021). Cognition was measured with the Wechsler Adult Intelli-

gence Scale–IV at age 45 (Wechsler, 2008). Total Ns for analyses were

768 and 767 for aging and cognition, respectively. The aging and cog-

nition measures in the HCP-Aging dataset mirrored those in HCP-YA

(total Ns were 711 and 597). In each dataset, we used ordinary least

squares regressions to predict both regional gradient values and gradi-

ent range from aging and cognition in separate models. For brain-wide

associations with regional measures, we corrected for multiple com-

parisons across the 360 cortical parcels using a false discovery rate

(FDR) procedure (Benjamini & Hochberg, 1995). Sex and motion (aver-

age frame-wise displacement) were included as covariates in all ana-

lyses. Standardized beta coefficients were generated for reporting, as

these provide an interpretable and generalizable measure of effect

size, reflecting the number of standard deviations of the predictor var-

iable associated with one standard deviation of change in the out-

come variable (Siegel & Wagner, 2022).

The concept and main analyses for this project were preregistered

at https://sites.duke.edu/moffittcaspiprojects/files/2021/07/Elliott_

2021a.pdf. Code used for performing all statistical analyses is available

at https://github.com/HaririLab/Publications/blob/master/Knodt202

3HBM_GradientReliability.Rmd. All analyses were checked for accuracy

by an independent data analyst who used the manuscript to reproduce

and check analyses with an independent copy of the dataset.

3 | RESULTS

3.1 | Macroscale principal FC gradient

As expected, the principal FC gradients derived from both rsFC and

GFC in the HCP-YA, Dunedin Study, and HCP-Aging datasets were

anchored in primary sensory regions at one end, transitioning smoothly

through unimodal and heteromodal association areas to heteromodal

cortex at the apex, replicating previous studies (Bethlehem

et al., 2020; Hong et al., 2020; Margulies et al., 2016) (See Figure 1 for

group-averaged maps for rsFC and GFC). Group-averaged regional

(i.e., parcel-wise) values ranged from �10.71 to 9.65 and � 6.65 to

6.50 for rsFC and GFC, respectively, in HCP-YA; from �8.67 to 8.44

and �7.00 to 7.46 in the Dunedin Study; and from �9.23 to 8.67 and

�7.33 to 7.00 in HCP-Aging. Note that gradient values are unitless,

but since individual gradients for all datasets were aligned to the same

template (see Section 2), all values reflect relative positioning along the

same axis. In HCP-YA, the principal FC gradient explained 13.9 ± .7%

(mean ± SD) and 17.1 ± 1.3% of individual variance in rsFC and GFC,

respectively. In the Dunedin Study, the principal gradient explained

16.5 ± 1.1% and 17.0 ± 1.2% in rsFC and GFC, respectively. In HCP-

Aging, the principal gradient explained 15.3 ± 1.0% and 16.0 ± 1.2%, in

rsFC and GFC, respectively. These highly similar patterns across our

three datasets are consistent with prior work (Bethlehem et al., 2020;

Cross et al., 2021; Hong et al., 2019; Margulies et al., 2016).

3.2 | Reliability of regional principal FC gradient
measures

We used rsFC and GFC data from the HCP-YA and Dunedin Study

test–retest datasets to assess the reliability of regional principal FC

F IGURE 1 Group-averaged principal functional connectivity
(FC) gradients derived from resting-state FC (rsFC) and general FC

(GFC) for the Human Connectome Project (HCP) multi-modal
parcellation. Gradient values are unitless but allow for relative
comparisons.

KNODT ET AL. 7

https://sites.duke.edu/moffittcaspiprojects/files/2021/07/Elliott_2021a.pdf
https://sites.duke.edu/moffittcaspiprojects/files/2021/07/Elliott_2021a.pdf
https://github.com/HaririLab/Publications/blob/master/Knodt2023HBM_GradientReliability.Rmd
https://github.com/HaririLab/Publications/blob/master/Knodt2023HBM_GradientReliability.Rmd


gradient measures and test whether it exceeds that of traditional

edge-wise FC.

3.2.1 | Reliability of rsFC-derived principal FC
gradient versus edge-wise FC

In the HCP-YA dataset (40 min of data), parcel-wise ICCs for rsFC-

derived edge-wise FC (averaged across all participating edges for each

parcel) ranged from .316 to .747 (mean across 360 regions = .587;

Figure 2). Parcel-wise ICCs for the principal FC gradient ranged from

.175 to .904 (mean across 360 regions = .653). T-tests revealed that

parcel-wise ICCs for the principal FC gradient were significantly

higher than for edge-wise FC (p < .001).

In the Dunedin Study dataset (mean data amount = 8.02 min),

parcel-wise ICCs for rsFC-derived edge-wise FC (averaged across

all participating edges) ranged from .112 to .563 (mean across

360 regions = .386; Figure 2). Parcel-wise ICCs for the principal

FC gradient ranged from 0 to .859 (mean across

360 regions = .418). T-tests revealed that parcel-wise ICCs for the

principal FC gradient were again significantly higher than for edge-

wise FC (p = .007).

3.2.2 | Reliability of GFC-derived principal FC
gradient versus edge-wise FC

In the HCP-YA dataset (40 min of data), parcel-wise ICCs for GFC-

derived edge-wise FC (averaged across all participating edges) ranged

from .144 to .743 (mean = .575; Figure 2). Parcel-wise ICCs for the

principal FC gradient ranged from 191 to .938 (mean = .688). T-tests

revealed that parcel-wise ICCs for the principal FC gradient were sig-

nificantly higher than for edge-wise FC (p < .001).

In the Dunedin Study dataset (mean data amount = 33.9 min),

parcel-wise ICCs for GFC-derived edge-wise FC (averaged across all

participating edges) ranged from .231 to .689 (mean = .532; Figure 2).

Parcel-wise ICCs for the principal FC gradient ranged from 0 to .916

(mean = .573). T-tests again revealed that parcel-wise ICCs for the

principal FC gradient were significantly higher than for edge-wise

FC (p < .001).

F IGURE 2 Parcel-wise reliability
of averaged edge-wise functional
connectivity (FC), averaged
thresholded edge-wise FC, and the
principal FC gradient derived from
resting-state FC (rsFC) and general FC
(GFC) in the young adult Human
Connectome Project (HCP-YA) and
Dunedin Study test–retest datasets.
For HCP-YA, 40 min of both rsFC and
GFC data were used; for the Dunedin
study, �8 min of rsFC and �34 min of
GFC data were used.
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3.2.3 | Reliability of principal FC gradient versus
thresholded edge-wise FC

In the HCP-YA dataset, parcel-wise ICCs for thresholded rsFC-derived

edge-wise FC ranged from .356 to .847 (mean = .676; Figure 2). T-

tests revealed that parcel-wise ICCs for thresholded edge-wise FC

were significantly higher than for the principal FC gradient (p = .007).

In the Dunedin Study dataset, parcel-wise ICCs for thresholded rsFC-

derived edge-wise FC ranged from .109 to .743 (mean = .500;

Figure 2). T-tests again revealed that parcel-wise ICCs for thresholded

edge-wise FC were significantly higher than for the principal FC gradi-

ent (p < .001).

In the HCP-YA dataset, parcel-wise ICCs for thresholded GFC-

derived edge-wise FC ranged from .176 to .829 (mean = .640;

Figure 2). T-tests revealed that parcel-wise ICCs for thresholded

edge-wise FC were significantly lower than for the principal FC gradi-

ent (p < .001). In the Dunedin Study dataset, parcel-wise ICCs for

thresholded GFC-derived edge-wise FC ranged from .217 to .802

(mean = .618; Figure 2). T-tests again revealed that parcel-wise ICCs

for thresholded edge-wise FC were significantly higher than for the

principal FC gradient (p < .001).

3.2.4 | Reliability of rsFC-derived versus GFC-
derived principal FC gradient measures

Next, we tested whether regional gradient ICCs where higher for GFC

than for rsFC. T-tests revealed that parcel-wise ICCs for the principal

FC gradient derived from GFC were significantly higher than for rsFC

in both the HCP-YA and Dunedin Study datasets (ps < .001).

3.2.5 | Effects of data amount on reliability

Finally, we observed that parcel-wise ICCs for both edge-wise FC and

the principal FC gradient derived from both rsFC and GFC were

higher for larger amounts of data (Figures 3 and 4). This pattern also

held for thresholded edge-wise FC.

3.2.6 | Regional differences in reliability

We additionally conducted post hoc tests for differences in ICCs

between unimodal and heteromodal regions for both edge-wise FC

values averaged for each parcel and parcel-wise principal FC gradient

values.

In the HCP-YA dataset, reliability was significantly higher in het-

eromodal regions for both edge-wise FC and the principal FC gradient

derived from rsFC (t = 10.346, p < .001 and t = 9.631, p < .001,

respectively). Reliability was significantly higher in heteromodal

regions for edge-wise FC and nonsignificantly higher for the principal

FC gradient derived from GFC (t = 3.185, p = .002 and t = 1.434,

p = .153, respectively).

In the Dunedin Study dataset, reliability was significantly higher

in heteromodal regions for both edge-wise FC and the principal FC

gradient derived from rsFC (t = 5.040, p < .001 and t = 4.657,

p < .001, respectively). Reliability was also higher in heteromodal

regions for edge-wise FC and the principal FC gradient derived from

GFC (t = 3.608, p < .001 and t = 7.605, p < .001, respectively).

For thresholded edge-wise FC, in the HCP-YA dataset, reliability

was significantly higher in heteromodal regions when derived from

both rsFC and GFC (t = 7.875, p < .001 and t = 2.788 p = .006,

F IGURE 3 Parcel-wise reliability of averaged edge-wise functional connectivity (FC), averaged thresholded edge-wise FC, and the principal
FC gradient derived from resting-state FC (rsFC) and general FC (GFC) in the young adult Human Connectome Project (HCP-YA) test–retest
dataset, calculated with increasing amounts of data.
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respectively). In the Dunedin Study dataset, reliability was significantly

higher in unimodal regions when derived from rsFC (t = �3.071,

p = .002) and nonsignificantly higher in heteromodal regions when

derived from GFC (t = .489, p = .625).

3.3 | Reliability of the principal FC gradient range

Finally, we evaluated the reliability of the principal FC gradient range.

In the HCP-YA dataset, ICCs for the range of the principal FC gradient

generally increased with larger amounts of data, reaching .661 for

rsFC and .764 for GFC with 40 min of data (Figure 5). In the Dunedin

Study dataset, ICCs for the gradient range calculated from an average

of 33.9 min of data were .341 for rsFC and .616 for GFC.

3.4 | Associations with age

After assessing the reliability of principal FC gradient measures, we

used the full HCP-YA and Dunedin Study datasets, as well as the

HCP-Aging dataset, to test their utility in the prediction of two impor-

tant features of health and behavior, namely aging and cognition.

We first tested whether measures of aging mapped onto regional

principal FC gradient values as well as FC gradient range, potentially

reflecting the disproportionate effects of aging on heteromodal cortex

or mirroring the compression of gradient range observed in mental

illness.

3.4.1 | Associations with regional principal FC
gradient measures

Parcel-wise maps of associations between measures of aging and

regional values of the principal gradient are shown in Figure 6.

Parcel-wise gradient values derived from rsFC were significantly

associated with measures of aging (after FDR correction) in

106 regions (40 of which were positive associations) in the Dunedin

Study dataset (βs ranged from �.200 to .180), but no regions in the

HCP-YA dataset (βs ranged from �.094 to .097). Values derived from

GFC were significantly associated with measures of aging in

159 regions (85 positive) in the Dunedin Study dataset (βs ranged

from �.213 to .173) and 197 regions (82 positive) in the HCP-YA

dataset (βs ranged from �.195 to .229). Additionally, gradient values

derived from both rsFC and GFC were significantly associated with

chronological age in the HCP-Aging dataset in 261 regions (133 posi-

tive) and 301 regions (162 positive), respectively (βs ranged from

�.243 to .254 and �.348 to .322). Across all datasets, positive associ-

ations were concentrated in unimodal regions and negative associa-

tions in heteromodal regions, reflecting contractions at the extremes

of the cortical hierarchy.

Associations with principal FC gradient range

The range of the principal FC gradient derived from rsFC was signifi-

cantly associated with measures of aging in the Dunedin Study data-

set (pace of aging; β = �.109, p = .004) but not the HCP-YA dataset

(chronological age; though the association was in the same direction:

β = �.032, p = .339; Figure 7). The range derived from GFC was sig-

nificantly associated with measures of aging in both datasets

(β = �.120, p = .001 in Dunedin and β = �.194, p < .001 in HCP-YA).

Additionally, the range of the principal gradient derived from both

rsFC and GFC was strongly associated with chronological age in the

HCP-Aging dataset (β = �.288, p < .001 and β = �.349, p < .001,

respectively). Consistent with the cortical distribution of positive and

negative parcel-wise associations, these results reflect an aging-

related contraction in the hierarchy.

3.5 | Associations with cognition

We next similarly tested whether measures of cognition mapped onto

principal FC gradient measures to explore relationships between cog-

nitive ability and regional variation in cortical hierarchy position as

well as distance between sensory and association cortices (i.e., FC gra-

dient range, per the “tethering” hypothesis).

F IGURE 4 Box plots for the
distributions of reliabilities across all
functional connectivity (FC) edges
(with and without thresholding) and
parcel-wise principal FC gradient
values.
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F IGURE 5 Reliabilities of the
principal functional connectivity
(FC) gradient range calculated from
resting-state FC (rsFC) and general FC
(GFC) data in the young adult Human
Connectome Project (HCP-YA)
(triangles) and Dunedin Study (circles)
test–retest datasets, plotted by scan
length.

F IGURE 6 Associations between
parcel-wise principal functional
connectivity (FC) gradient values
derived from resting-state FC (rsFC)
and general FC (GFC) and measures of
aging and cognition in all three
datasets. Associations are shown as
both whole-brain unthresholded maps
to illustrate the full patterns of
associations, as well as thresholded to
show only parcels where associations
were significant after false discovery
rate (FDR)-correction over 360 tests
(pFDR < .05).
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3.5.1 | Associations with regional principal FC
gradient measures

Parcel-wise gradient values derived from rsFC were not significantly

associated with measures of cognition (after FDR correction) in

either the HCP-YA or the Dunedin Study datasets (Figure 6; βs ran-

ged from �.119 to .136 and �.116 to .113). Values derived from

GFC were significantly associated with measures of cognition in

96 regions (53 positive) in the HCP-YA dataset (βs ranged from

�.138 to .169) and 128 regions (49 positive) in the Dunedin Study

dataset (βs ranged from �.164 to .131). Gradient values derived from

GFC were positively associated with age-adjusted cognition in the

HCP-Aging dataset in 1 region (none for rsFC; βs ranged from �.151

to .166 for GFC and �.155 to .139 for rsFC). In the HCP-YA and

Dunedin Study datasets, positive associations were generally concen-

trated in heteromodal regions and negative associations in unimodal

regions, reflecting expansions at the extremes of the cortical

hierarchy.

3.5.2 | Associations with principal FC
gradient range

The range of the principal FC gradient derived from rsFC was not sig-

nificantly associated with measures of cognition in either the HCP-YA

or Dunedin Study (age-adjusted cognition composite in HCP-YA:

β = .068, p = .059; IQ in Dunedin: β = 0, p = .999; Figure 7). The gra-

dient range derived from GFC was significantly associated with cogni-

tion in the HCP-YA (β = .089, p = .011) but not the Dunedin Study,

though the effect was in the same direction (β = .052, p = .145). The

gradient range was not associated with age-adjusted cognition in

the HCP-Aging dataset for either measure of connectivity (β = �.047,

p = .218 for rsFC and β = �.045, p = .238 for GFC). Similarly but to

a lesser extent than for associations with aging, these results are con-

sistent with the cortical distribution of positive and negative parcel-

wise associations with cognition, reflecting a cognition-related expan-

sion in the cortical hierarchy in the HCP-YA and Dunedin Study

datasets.

4 | DISCUSSION

Here we used parallel analyses in three independent, complementary

datasets to first derive the principle FC gradient using both rsFC and

GFC, and then evaluate its measurement reliability as well as its pre-

dictive utility in explaining individual differences in aging and cogni-

tion. In the HCP-YA and Dunedin Study test–retest datasets, we

found that regional reliabilities for the principal FC gradient generally

exceeded the commonly accepted “good” threshold of .6 (Cicchetti &

Sparrow, 1981) when sufficient data (i.e., at least roughly 30 min)

were available. The reliabilities of the gradient measures were consis-

tently higher than those for traditional (i.e., unthresholded) edge-wise

FC measures, were higher for FC derived from GFC as opposed to

rsFC, and were higher for longer scan lengths (i.e., larger data

amounts). The distance between unimodal and heteromodal cortices,

or gradient range, also demonstrated “good” reliability as well as

higher reliability when derived from GFC and longer scan lengths.

Regional FC gradient values and gradient range were significantly

associated with aging in all three datasets (HCP-YA, Dunedin Study,

and HCP-Aging), and moderately associated with cognition in the

HCP-YA and Dunedin Study, reflecting contractions and expansions

of the cortical hierarchy, respectively. Collectively, these results dem-

onstrate that the principal FC gradient effectively captures a reliable

feature of the human brain subject to interpretable and biologically

meaningful individual variation.

4.1 | Reliability of the principal FC gradient

Using test–retest data from the HCP-YA and Dunedin Study datasets,

we found good reliability for regional principal FC gradient values.

ICCs in the HCP-YA dataset reached the “good” threshold (i.e., ≥.6)

for more than 25% of parcels with as little as 15 min of GFC data

(Figures 2 and 4). In contrast, at least 30 min of data were required to

reach good reliability for more than 25% of edges with unthresholded

edge-wise FC measures commonly used in the literature. T-tests con-

firmed that regional principal FC gradient values were consistently

more reliable than unthresholded edge-wise FC values across datasets

F IGURE 7 Associations between the principal FC gradient range derived from rsFC and GFC and measures of aging and cognition in all three
datasets. Filled circles indicate associations that were significant after FDR-correction over four tests (pFDR < .05). Note that for aging, negative
values indicate that older individuals exhibit a more compressed gradient range. For cognition, positive values indicate that individuals with higher
cognitive functioning exhibit a more expanded gradient range.
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and modalities. However, when FC edges were thresholded so that

only the top 10% of strongest edges were retained (to mirror an inter-

mediate step in the derivation of the principal FC gradient), ICCs

reached the “good” threshold for more than 25% of parcels with as lit-

tle as 10 min of GFC data and were higher than those for regional

principal FC gradient (except in the case of GFC in HCP-YA). These

findings are consistent with a previous demonstration of good FC gra-

dient reliability for sufficient amounts of rsFC data (Hong et al., 2020),

though to our knowledge, this is the first study to evaluate GFC-

derived gradient reliability and directly compare gradient reliability to

edge-wise FC reliability.

Our observations of greater reliability for the principal FC gradi-

ent when compared to unthresholded but not thresholded FC are

consistent with prior work and may help to shed additional light on

the effects of preprocessing choices on FC reliability. Previous studies

have demonstrated increased reliability for edges with the strongest

FC (Tozzi et al., 2020), as well as for gradients derived from FC matri-

ces with the highest FC-strength-based thresholds (Hong et al., 2020).

The present findings of generally lower reliability for the principal FC

gradient compared to thresholded FC could be related to previous

reports consistently demonstrating that preprocessing pipelines that

more effectively reduce artifacts due to motion or non-brain physio-

logical signals tend to yield less reliable outputs (Birn et al., 2014;

Parkes et al., 2018; Shirer et al., 2015). Future work could test

whether the application of the diffusion map embedding dimension

reduction strategy to the thresholded FC matrix serves to further

extract true variance from background noise related to motion or

other non-brain, but reliable, signals. Notably, there remains a lack of

consensus on the optimal strategy for striking a balance between

reducing artifact while preserving reliability and validity (Ciric

et al., 2017; Kassinopoulos & Mitsis, 2022), including considerations

related to the implementation of FC-strength-based thresholding of

FC matrices in studies of individual differences. For example, propor-

tional thresholding (retaining only a given percentage of strongest

edges) results in the inclusion of unreliable edges and noisier FC

matrices for people with lower average FC, which is often prevalent in

patient populations, and absolute thresholding results in different net-

work topologies for different levels of average FC (Ginestet

et al., 2011; van den Heuvel et al., 2017; van Wijk et al., 2010; Vasa

et al., 2018). Several strategies have been proposed to address these

challenges (Ginestet et al., 2011; Vasa et al., 2018), but the lack of a

ground truth makes it difficult to identify an optimal approach (Parkes

et al., 2018). Importantly, the biological underpinnings of the principal

FC gradient may enable its use as a proxy for ground truth in future

work seeking to solve this problem. It is worth noting that other pre-

processing choices may influence reliability as well. For example,

broadening the temporal filter has been associated with increased reli-

ability of edge-wise FC measures (Shirer et al., 2015), and the applica-

tion of an alternative dimensionality reduction strategy (i.e., PCA) has

been associated with increased reliability for FC gradient measures

(Hong et al., 2020). Thus, it is critical that researchers consider the

reliability implications of their preprocessing choices when planning

and interpreting their analyses.

As expected, we also found that regional principal FC gradient

measures derived from GFC were generally more reliable than those

derived from rsFC, even for equal amounts of GFC and rsFC data

employed in the HCP-YA dataset. This is consistent with previous

demonstrations of increased reliability of GFC for traditional

edge-wise FC measures (Elliott et al., 2019) and suggests that differ-

ent cognitive states capture complementary trait-like properties of FC

networks that are relevant to the hierarchical organization of the cor-

tex. In the HCP-YA dataset we observed lower reliability for parcel-

wise principal FC gradient measures derived from GFC than for rsFC

with smaller data amounts (<25 min), but this represented a small dif-

ference in largely overlapping broad distributions. This potential dis-

crepancy from previous work (Elliott et al., 2019) could be due to

slight differences in pre-processing and brain parcellation. Future

work on test–retest datasets with large amounts of resting-state and

task fMRI data is needed to provide additional context for these find-

ings. More consistent with our hypotheses was the observation that,

as with edge-wise FC measures, the reliability of regional principal FC

gradient measures was strictly higher for longer scan lengths. This

was expected from prior work (Elliott et al., 2019; Hong et al., 2020)

and reemphasizes the importance of collecting sufficiently long scans

for studies of individual differences. Finally, we found that the reliabil-

ity of the principal FC gradient range mirrored that of regional gradi-

ent values, with higher reliability when derived from GFC and longer

scan lengths relative to rsFC and shorter scan lengths. That said,

“good” reliability (i.e., ICCs >0.6) was achieved with as little as 15 min

of GFC data.

Given that the reliability of a measure sets an upper bound on the

size of associations that can be observed with that measure

(Nunnally, 1959), this work provides additional support for the use of

both regional gradient values and gradient range in studying how indi-

vidual differences in behavior map onto the functional network struc-

ture of the cortex. This is encouraging for fMRI research in light of

recent evidence for low test–retest reliability of task activation mea-

sures (Elliott et al., 2020) and edge-wise rsFC measures as revealed by

this and previous studies (Noble et al., 2019), especially for low data

amounts. The ability of gradient measures to achieve “good” reliability
even for smaller data amounts (i.e., 15 min of GFC) suggests they can

be leveraged in many existing datasets or collected in future samples

where long data collection protocols are not feasible (e.g., children,

patients) as a reliable measure of intrinsic network organization for

individual differences research. Further, the reliabilities of gradient

measures derived from larger amounts of data, especially with GFC,

reported here nearly approach those observed for structural MRI

measures of the brain including cortical thickness, surface area, and

gray matter volume (Elliott et al., 2020). Our additional observation of

increased reliability for gradient measures in heteromodal cortices

confirms previous findings (Hong et al., 2020) and makes these

regions, which support higher-order processes, especially ripe for the

discovery of links between individual differences in brain–behavior

associations. Indeed, studies have demonstrated increased individual

variability in heteromodal cortices, not only in measures of FC

(Benkarim et al., 2021; Mueller et al., 2013) but also functional
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network topography (Kong et al., 2019) and structure–function cou-

pling (Valk et al., 2022), beginning as early as infancy (Stoecklein

et al., 2020).

4.2 | Gradient associations with age

We found robust associations between the principal FC gradient and

aging with all datasets and modalities (with the exception of HCP-YA

rsFC), both at the regional level and with gradient range. Aging-related

reductions in gradient range were driven by movement toward the

center of the cortical hierarchy from both ends, that is, increases in

gradient values in unimodal regions at the bottom of the hierarchy

and decreases in gradient values in heteromodal regions at the top.

This was true not only for chronological aging in the HCP-YA and

HCP-Aging samples, but also for biologically determined pace of aging

in the Dunedin Study sample, where participants were all 45 years old

at the time of scanning. This suggests that the observed gradient pat-

tern of aging reflects true mechanisms of underlying neurobiological

aging, independent of any cohort effects. Notably, effects were stron-

ger for gradient measures derived from GFC data than for those

derived from rsFC data, consistent with the higher reliability of

those measures. We additionally note that the only analysis for which

we did not observe substantial aging-related effects with gradient

measures was that with HCP-YA rsFC, though the direction of the

associations were consistent with the other analyses. This is particu-

larly surprising given the relatively higher reliability of the 40-min

HCP-YA rsFC data employed here (i.e., higher than the roughly

34-min Dunedin Study GFC data and considerably higher than the

8-min Dunedin Study rsFC data, which both demonstrated robust

aging effects). We take this observation to further reflect the advan-

tages of GFC for the study of individual differences and the need for

further work employing long scan lengths in large datasets.

An aging-related compression in the cortical hierarchy implies

increasing similarity among global connectivity patterns and is consis-

tent with demonstrations of decreased functional network differentia-

tion in brain aging (Chan et al., 2014; Damoiseaux, 2017; Geerligs

et al., 2015; Stumme et al., 2020; Wig, 2017), marked by weaker

within-network connectivity and stronger between-network connec-

tivity (Betzel et al., 2014; Goh, 2011). Nonetheless, our findings repre-

sent the strongest evidence to date for aging-related compression of

the principal gradient, given that results from previous studies of FC

gradients and aging imply either a lack of a relationship with principal

gradient range (Bethlehem et al., 2020) or, in fact, a slight expansion

(Setton et al., 2022); however, a third study in a relatively small life-

span sample also found a compression of the gradient in late life, pre-

ceded by an expansion into midlife (Nenning et al., 2020). The lack of

clear associations in previous studies may be related to smaller sam-

ples (Setton et al., 2022) or samples including very young adults and

thus less optimized for isolating effects specific to aging (Bethlehem

et al., 2020). On the other hand, our consistent findings of aging-

related principal gradient compression in three well-powered samples,

including one focused on later life and one on biological aging, suggest

that future efforts to better understand changes in the cortical hierar-

chy could yield valuable insights into neurobiological aging.

4.3 | Gradient associations with cognition

Associations between the principal FC gradient and general

cognition were somewhat weaker and less consistent than those with

aging. Only GFC-derived gradient range in the HCP-YA dataset had a

significant association with cognition, though the association in the

Dunedin Study dataset was in the same direction, and the regional

patterns of associations were similar in both the HCP-YA and Dune-

din Study. Given that age has a major influence on cognitive abilities

(Salthouse, 2009), adjusting for age may have removed much of the

meaningful variance in the HCP-Aging dataset where there is a much

wider age range (36–100 years). In a topographically similar manner

to aging (but in the opposite direction), cognition-related increases in

gradient range were driven by movement away from the center of the

cortical hierarchy at both ends, that is, decreases in gradient values in

unimodal regions at the bottom of the hierarchy and increases in gra-

dient values in heteromodal regions at the top.

While others have demonstrated the ability of FC gradients to

predict cognition in multivariate analyses (Hong et al., 2020; Kong

et al., 2022), our findings provide a novel mapping between the princi-

pal FC gradient and cognition. While previous efforts to map cogni-

tion to measures characterizing global properties of FC networks have

failed to replicate (Kruschwitz et al., 2018; van den Heuvel

et al., 2009), findings with FC gradients usefully inform ongoing

research to better understand the brain mechanisms underlying indi-

vidual variability in this complex behavioral phenotype. An expanded

range of the principal FC gradient, indicating increased functional dis-

tance between primary sensory and heteromodal association cortices,

could, as posited in the “tethering hypothesis” (Buckner &

Krienen, 2013), enable greater functional flexibility of association cor-

tices and a wider span of possible network configurations facilitating

more flexible cognition. This would seem consistent with evidence for

a relationship between network segregation and cognitive ability

(Chan et al., 2014; Wig, 2017). However, this is potentially inconsis-

tent with a recent study performing a hierarchical analysis in the

HCP-YA dataset reporting that general cognitive ability maps more

readily onto global integration (Wang et al., 2021). Nonetheless, the

principal FC gradient offers a parsimonious and interpretable perspec-

tive for future efforts to better understand the brain mechanisms of

cognition.

4.4 | Limitations

Our findings should be interpreted in light of several limitations. First,

we conducted all analyses using time series data that had been parcel-

lated using a common group-level parcellation scheme, which has

been shown to mask important individual differences due to variation

in functional topography (Laumann et al., 2015; Wang et al., 2015). As
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such, our results likely represent a lower bound on the ability of the

principal FC gradient to predict individual differences in aging and

cognition. Second, other methods of data acquisition (e.g., multi echo)

and preprocessing strategies (as described earlier), as well as multivari-

ate methods, have been shown to increase reliability of fMRI mea-

sures, and we refer the interested reader to previous work for

thorough evaluations of the effects of these factors on reliability

(Hong et al., 2020; Lynch et al., 2020; Yoo et al., 2019). However, our

focus on acquisition, processing, and analysis strategies currently typi-

cal for the field provides better context for existing and ongoing stud-

ies of individual differences in the principal FC gradient and edge-wise

FC. Third, it has been shown that secondary FC gradients are also

reproducible across datasets and relevant to behavior (Bethlehem

et al., 2020; Brown et al., 2022; Girn et al., 2022; Setton et al., 2022;

Sydnor et al., 2021), and very recent work has demonstrated that

40 or 50 gradients are optimal for predicting behavior (Kong

et al., 2022). We chose to focus on better understanding the behav-

ioral relevance of the principal FC gradient because of its clear biologi-

cal underpinnings and consistently maximal explanation of variance in

target constructs (Huntenburg et al., 2018). Future work should fur-

ther explore these questions with additional gradients.

5 | CONCLUSION

We have shown that the principal FC gradient, especially derived

using GFC, is more reliable than traditional edge-wise FC measures

and captures important individual differences in associations between

the brain and measures of health and behavior. The ability of this non-

invasively measurable proxy of the sensory-to-association axis of the

human cortex to capture meaningful individual differences offers

promise for further insight into how the hierarchical organization of

the brain gives rise to complex human phenomena including aging and

cognition.
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